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The in-plane free vibrational analysis of symmetric cross-ply laminated circular
arches is studied using both the Timoshenko and Bernoulli}Euler beam theories.
The free vibration equations are derived based on the distributed parameter model.
The transfer matrix method is used in the analysis. The numerical algorithm
available in the literature is adopted to compute the exact overall dynamic transfer
matrix of the curved beam. The rotary inertia, axial and shear deformation e!ects
are considered in the Timoshenko analysis by the "rst-order shear deformation
theory. All these e!ects are neglected in the Bernoulli}Euler analysis. Radius of the
arch/thickness ratios from 5 to 25, "xed}"xed, "xed}simple and "xed}free
boundary conditions, and two values of the opening angles (103 and 903) are taken
into consideration in the parametric study. The e!ects of the ratio of the
extensional modulus to the transverse modulus on the natural frequencies are
examined. Non-dimensional numerical results are also presented in terms of
relative errors. ( 1999 Academic Press
1. INTRODUCTION

Curved beams are used in many engineering applications. Chidamparam and
Leissa [1] summarized the extensive published literature on the vibrations of
isotropic and curved bars, rings and arches of arbitrary shape which lie in the plane.
However, the dynamic problems of laminated composite curved beams have not
been studied extensively. Earlier works are related to the sandwich beams or closed
composite rings [2}6].

Bhimaraddi et al. [7] presented a 24-d.o.f. of isoparametric "nite element for the
analysis of generally laminated curved beams. The rotary inertia and shear
deformation e!ects were considered in this study [7]. They gave the natural
frequencies of (03/903) laminated cantilever thin and thick curved beams. The
incremental equations of motion based on the principle of virtual displacements of
a continuous medium are formulated using the total Lagrangian description by
Liao and Reddy [8]. They developed a degenerate shell element with a degenerate
curved beam element as a sti!ener for the geometric non-linear analysis of
laminated, anisotropic, sti!ened shells. Qatu [9] presented a set of in-plane
0022-460X/99/290575#15 $30.00/0 ( 1999 Academic Press



576 V. YILDIRIM
equations and their solutions for laminated shallow arches having simply
supported boundary conditions. The e!ects of axial and shear deformations
and the rotary inertia were neglected in reference [9]. Qatu and Elsharkawy [10]
worked out the in-plane free vibration of anti-symmetric laminated arches
with deep curvature and arbitrary boundaries. In-plane free vibration analysis
of moderately thick laminated circular beams was studied by Qatu [11].
Ymldmrmm [12], recently presented non-dimensional in-plane free vibrational
characteristics of circular arches considering all the parameters a!ecting natural
frequencies.

As it is well known that the Bernoulli}Euler beam theory does not include
the rotary, shear and extensional deformation e!ects in the vibration analysis.
Since the ratio of extensional sti!ness to the transverse shear sti!ness is high
for laminated beams, the e!ect of the shear deformation in laminated beams is
more signi"cant than in homogeneous ones. The study of Abramovich [13],
Khdeir and Reddy [14], and Ymldmrmm et al. [15] showed that these e!ects are
more important for straight beams. Abramovich [13] studied these e!ects
for the axial and out-of-plane bending oscillations of the simply supported
straight beams. Khdeir and Reddy [14] considered the fundamental frequencies
for axial and out-of-plane bending vibrations. Ymldmrmm et al. [15] presented
a detailed analysis for the in-plane free vibration behaviour of straight
beams.

The main objective of the present study is to present the rotary inertia, axial and
shear-deformation e!ects on the in-plane natural frequencies of curved beams.
In this study, the transfer matrix method is preferred as a numerical solution
technique for the free vibration analysis of the continuous arch system.
The transfer matrix method is used for the solution of one-dimensional
problems. However, the method has not been applied widely to the composite
analysis of beams. It is well known that the transfer matrix method gives
exact results when the exact overall dynamic transfer matrix can be obtained.
The main problem with this method is the determination of the exact overall
transfer matrix considering rotary inertia, axial and shear deformation e!ects. In
this study, the exact overall dynamic transfer matrix of the arch is obtained
using Ymldmrmm's numerical algorithm, which was successfully used for both
isotropic [16}20] and anisotropic [12, 15] materials. The rotary inertia, axial
and shear deformation e!ects have been studied considering R/h (the radius
of the arch/thickness) ratios, the boundary conditions, the opening angles, a,
and the ratio of extensional modulus to the transverse modulus (E

1
/E

2
) for the "rst

six free vibration frequencies. The numerical results are given in graphical and
tabular forms.

2. FORMULATION OF THE PROBLEM

Ymldmrmm [21] presented the free and forced vibration equations of initially
twisted laminated composite space rods. Referring to this study, the following
equations are obtained for the in-plane free vibration of symmetric cross-ply
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laminated circular beams:
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The following assumptions are used in the derivation of equations (1): the
relationship between the forces and deformations are small and linear. The bar is
made of an elastic, homogeneous and orthotropic material. Cross-sectional area is
uniform. Warping and pre-twisting are neglected. The normal, n, and binormal, b,
axes are the principal axes of the beam (Figure 1).

In equations (1), ¹
t
and ¹

n
are the axial and shear forces, M

b
is the bending

moment, respectively. ;
t
and ;

n
are the displacements in the t (tangential unit

vector) and n directions, respectively. X
b
is the rotation about b axis, k@ is the shear

coe$cient factor, u (rad/s) is the circular frequency and ds ("R dh) is the
in"nitesimal length of the beam. ADE, SDE and RIE represent the e!ects of the
axial and shear deformations and the rotary inertia, respectively. Other terms in
equations (1) are as follows for laminated beams:
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where N represents the total number of plies, and o denotes the density of the
material. I

b
is the moment of inertia about b axis and A is the undeformed

cross-sectional area. The cross-sectional rigidities in equations (1) are achieved as in
the following:
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Fig. 1. A laminated composite circular beam and Frenet co-ordinates (t, n, b).
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In the above equations, the elements of the transformed reduced sti!ness matrix
Q1 for a lamina is obtained as follows:

QM
11
"(C@

11
S@
11
#C@

12
S@
12

#C@
13

S@
13

)/S@
11

, QM
22
"C@

66
, (4)

where C@
ij

and S@
ij

denote the elements of the transformed sti!ness and compliance
matrices, respectively. They are given by Ymldmrmm [21] for transversely isotropic
material as
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where

m"cos b. (6)

and b is the angle between the beam axis and the material symmetry axis (Figure 2).
In reference [21], three-dimensional generalized Hooke's law is used based on the
classical beam theory to obtain the resultant constitutive equations of the beam.



Fig. 2. Positive rotation of principal material axes (1@, 2@, 3@) from the beam (1, 2, 3) axes.
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This formulation, which comprises the Poisson e!ect, coincides with the elasticity
and compliance matrices in the o!-axis co-ordinate system given by Gra! and
Springer [22].

The matrix form of equations (1) is as follows:

dZ/ds"D*Z, (7)

where D* is the dynamic di!erential matrix and Z is the state vector. In the transfer
matrix method, which provides an exact solution to the problem, the solution of
equation (7) is given by Pestel and Leckie [23] as

Z(s)"F(s, u)Z(0), (8)

where F is the overall dynamic transfer matrix. The standard expression of F for
constant sections is in the following form [23]:

F (s, u)"eD*s"I#sD*#s2D*2/2!#s3D*3/3!#2 (9)

where I is the unit matrix. In this study, equation (10), which is the other expression
of equation (9) based on the Cayley}Hamilton theorem, is used to calculate the
transfer matrix by the e!ective numerical algorithm available in literature [16}20]:

F(s, u)"
5
+
k/0

U
k
(s, u)D*k, (10)

where U
k
(s, u) are functions of scalar in"nite series in s and u. It is necessary to take

a number of terms in the in"nite series U into consideration to obtain accurate
results. The present numerical algorithm [16}20] o!ers an e!ective procedure to
employ many terms in the calculation of the overall transfer matrix without
encountering any ill situations. In this study, 600 terms were taken into account in
each U series of equation (10). Six hundred terms in equation (10) correspond to
3600 terms in equation (9). After computation of the overall dynamic transfer
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matrix, the eigenvalue equation can be obtained considering the boundary
conditions given at both ends (s"0 and s"Ra) using equation (8). The boundary
conditions are expressed as follows: Clamped end: ;

t
";

n
"X

b
"0; Hinged end:

;
t
";

n
"M

b
"0; and Free end: ¹

t
"¹

n
"M

b
"0. The natural frequency, is,

then, computed by setting the determinant of the coe$cient matrix in the frequency
equation equal to zero. In this study, all numerical computations were performed
using double-precision arithmetic. The natural frequencies were obtained by the
method of searching the determinant of the coe$cient matrix.

3. NUMERICAL EXAMPLES AND DISCUSSION

The material properties of transversely isotropic materials used in this study are
given in Table 1. In Table 1, E

i
G

ij
, l

ij
represent the Young's moduli, shear moduli,

and the Poisson ratio for an orthotropic lamina, respectively. The shear correction
factor is taken to be k@"6/5. In order to examine the accuracy of the present theory
with the reported values, miscellaneous problems were solved for di!erent
boundary conditions and material types.

As a test example, the axial and out-of-plane free vibration problem of
a graphite-epoxy1 beam is handled. The reported results presented in Table 2 are
for Graphite-epoxy1 material. Table 3 shows the present results of the same
example for di!erent material types. A good agreement is observed on comparing
Tables 2 and 3.

The "rst eight purely in-plane (axial#in-plane bending) free vibration
frequencies of the test example are presented in Table 4 for di!erent boundary
conditions, h/b ratios and material types. As can be seen from Table 4,
non-dimensional natural frequencies increase with decreasing h/b ratios.

A number of examples are solved to investigate the e!ects of the rotary inertia,
axial and shear deformations on the natural frequencies of (03/903/03) laminated
beams. All layers are assumed to have the same thickness and the beam is assumed
to have orthotropic material properties (E

1
/E

2
"40, G

12
"0)6E

2
, G

23
"0)5E

2
,

l
12
"0)25[14]) in the material principal axes. The shape of the cross-section is

assumed to be a square (h/b"1). The following is used for the determination of
TABLE 1
Mechanical properties of transversely isotropic materials

E
1

E
2

G
12
"G

13
G

23
o l

12Material types (GPa) (GPa) (GPa) (GPa) (kg/m3)

Graphite-epoxy1
(AS4/3501-6) 144)8 9)65 4)14 3)45 1389)23 0)3

Graphite-epoxy2
(T300/N5208) 181)0 10)3 7)17 3)433 1600)0 0)28

Kevlar 49-epoxy 76)0 5)56 2)30 1)618 1460)0 0)34



TABLE 2
Non-dimensional axial and out-of-plane bending natural frequencies
["u¸2(o/E

1
h2)1@2] of symmetric [03/903/903/03] graphite-epoxy1 beams

(¸/h"10 and h/b"1) in the literature

Simple}simple Fixed}free Fixed} Fixed}"xed
Mode simple

numbers [24] [25] [24] [25] [24] [24] [25]

1 2)3189 2)3194 0)8891 0)8819 3)0447 3)7751 3)7576
2 7)0171 7)0029 4)1792 4)0259 7)5593 8)0440 7)8718
3 12)132 12)037 9)1916 9)1085 12)565 12)998 12)573
4 17)301 17)015 !(*) 12)193 17)732 18)165 17)373
5 22)533 21)907 14)384 14)080 23)011 23)502 22)200
6 !(*) 23)337 19)175 19)066 28)430 !(*) 23)337
7 27)881 26)736 25)093 23)938 34)027 28)991 27)254
8 33)396 * 30)620 * 39)838 34)675 *

*Longitudinal modes stated by reference [25].
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non-dimensional frequencies:

-"S
o

E
2
h2

uR2. (11)

The relative error between Timoshenko's and Bernoulli's frequencies is determined
as (-T"Timoshenko's frequency, -B"Bernoulli's frequency):

Relative error"100(-T!-B)/-T . (12)

Variation of the "rst six in-plane non-dimensional natural frequencies are pre-
sented in Figures 3}5 with varying R/h ratios, boundary conditions, and opening
angles. The Timoshenko and Bernoulli solutions, and relative error for Bernoulli
theory are shown in Figures 3}5. It is observed from the "gures that relative errors
increase with decreasing R/h ratios, increasing the number of modes, decreasing
opening angles and increasing the number of constraints for boundary conditions.
For the fundamental frequencies, while the absolute relative error is 0)8% for the
"xed}free beam with R/h"25 and a"903, this value reaches 16% for the
"xed}"xed beam with R/h"25 and a"903. For the sixth natural frequency of
the "xed}"xed beam with R/h"5 and a"103, the absolute relative error rises by
6,950%. The absolute relative error for the fundamental frequency is equal to 830%
for "xed}"xed ends with R/h"25 and a"103. Figures 3}5 display the application
limits of the Bernoulli theory for ¸/h)25 for a"103 and a"903. The relative
errors from the inner opening angles, 103(a(903, can be estimated
approximately depending on the errors for 103 and 903. It is clearly understood
from these "gures that the free and forced vibration of laminated composite
curved beams must be studied with the shear deformation theories.
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Fig. 3. The "rst six natural frequencies of the "xed}free circular beam.
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The e!ects of the extensional modulus to the transverse modulus, E
1
/E

2
, on the

fundamental natural frequencies are examined and the results are presented in
Table 5. As can be expected, when E

1
/E

2
increases, the e!ects of the rotary inertia,

axial and shear deformation e!ects increase considerably.
Finally, the purely in-plane Timoshenko's and Bernoulli's frequencies of

a [03/903/903/03] Graphite-epoxy straight beam with "xed}free and "xed}simple



Fig. 4. The "rst six natural frequencies of the "xed}simple circular beam.
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ends (¸/h"10, h/b"1) are given in Table 6 in a comparative manner. The rotary
inertia, the shear and extensional deformation e!ects are considerably more
important for straight beams than curved beams.

4. CONCLUSIONS

The in-plane free vibration analysis of symmetric cross-ply laminated circular
arcs was studied to investigate the axial and shear deformations, and the rotary



Fig. 5. The "rst six natural frequencies of the "xed}"xed circular beam.
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inertia e!ects on the "rst six natural frequencies. The accuracy of the formulation
was veri"ed by solving miscellaneous numerical examples. It was observed from the
comparisons that this formulation o!ers reasonable results for the natural
frequencies associated with the "rst and the higher modes. A non-dimensional
parametric study was performed based on the Timoshenko and Bernoulli}Euler
beam theories for di!erent boundary conditions, slenderness ratios, the ratio of the
extensional modulus to the transverse shear modulus, and opening angles. It was



TABLE 5
<ariation of the purely fundamental in-plane ¹imoshenko1s natural frequencies
["u¸2(o/E

2
h2)1@2] of [03/903/03] circular beam with the ratio of E

1
/E

2
for

,xed},xed ends (¸/h"10, h/b"1)

Relative error for
a (3) E

1
/E

2
Timoshenko Bernoulli (!%)

10 1 108)31 440
20 129)89 1561
40 134)72 2151

90 1 6)217 31
20 16)759 44
40 19)273 76

TABLE 6
¹he purely in-plane frequencies ["u¸2(o/E

1
h2)1@2] of [03/903/903/03]

Graphite-epoxy1 straight beam (¸/h"10, h/b"1)

Fixed}free Fixed}simple

Modes Timoshenko Bernoulli Timoshenko Bernoulli

1 0)710 0)742 (!4)5%)* 2)638 3)251 (!23%)*
2 3)637 4)646 (!28%)* 6)899 10)53 (!53%)*
3 8)335 13)01 (!56%)* 11)80 21)98 (!86%)*
4 11)47 25)49 (!122%)* 16)90 37)58 (!122%)*
5 13)43 42)13 (!214%)* 22)02 57)35 (!160%)*
6 18)66 62)94 (!237%)* 22)94 81)28 (!254%)*

*The relative errors for Bernoulli's results [equation (12)].

588 V. YILDIRIM
concluded that dynamical problems of laminated composite circular arches must
be solved considering the rotary inertia, axial and transverse shear deformation
e!ects in the mathematical formulation.
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