ROTARY INERTIA, AXIAL AND SHEAR DEFORMATION EFFECTSON THEIN-PLANENATURALFREQUENCIESOF SYMMETRIC CROSS-PLY LAMINATED CIRCULAR ARCHES

V. Yildirim
Department of Mechanical Engineering, University of Çukurova, 01330 Balcalı-Adana/Turkey

(Received 25 August 1998 and in final form 4 January 1999)

Abstract

The in-plane free vibrational analysis of symmetric cross-ply laminated circular arches is studied using both the Timoshenko and Bernoulli-Euler beam theories. The free vibration equations are derived based on the distributed parameter model. The transfer matrix method is used in the analysis. The numerical algorithm available in the literature is adopted to compute the exact overall dynamic transfer matrix of the curved beam. The rotary inertia, axial and shear deformation effects are considered in the Timoshenko analysis by the first-order shear deformation theory. All these effects are neglected in the Bernoulli-Euler analysis. Radius of the arch/thickness ratios from 5 to 25 , fixed-fixed, fixed-simple and fixed-free boundary conditions, and two values of the opening angles $\left(10^{\circ}\right.$ and $\left.90^{\circ}\right)$ are taken into consideration in the parametric study. The effects of the ratio of the extensional modulus to the transverse modulus on the natural frequencies are examined. Non-dimensional numerical results are also presented in terms of relative errors. (C) 1999 Academic Press

1. INTRODUCTION

Curved beams are used in many engineering applications. Chidamparam and Leissa [1] summarized the extensive published literature on the vibrations of isotropic and curved bars, rings and arches of arbitrary shape which lie in the plane. However, the dynamic problems of laminated composite curved beams have not been studied extensively. Earlier works are related to the sandwich beams or closed composite rings [2-6].

Bhimaraddi et al. [7] presented a 24-d.o.f. of isoparametric finite element for the analysis of generally laminated curved beams. The rotary inertia and shear deformation effects were considered in this study [7]. They gave the natural frequencies of $\left(0^{\circ} / 90^{\circ}\right)$ laminated cantilever thin and thick curved beams. The incremental equations of motion based on the principle of virtual displacements of a continuous medium are formulated using the total Lagrangian description by Liao and Reddy [8]. They developed a degenerate shell element with a degenerate curved beam element as a stiffener for the geometric non-linear analysis of laminated, anisotropic, stiffened shells. Qatu [9] presented a set of in-plane
equations and their solutions for laminated shallow arches having simply supported boundary conditions. The effects of axial and shear deformations and the rotary inertia were neglected in reference [9]. Qatu and Elsharkawy [10] worked out the in-plane free vibration of anti-symmetric laminated arches with deep curvature and arbitrary boundaries. In-plane free vibration analysis of moderately thick laminated circular beams was studied by Qatu [11]. Yıldırım [12], recently presented non-dimensional in-plane free vibrational characteristics of circular arches considering all the parameters affecting natural frequencies.

As it is well known that the Bernoulli-Euler beam theory does not include the rotary, shear and extensional deformation effects in the vibration analysis. Since the ratio of extensional stiffness to the transverse shear stiffness is high for laminated beams, the effect of the shear deformation in laminated beams is more significant than in homogeneous ones. The study of Abramovich [13], Khdeir and Reddy [14], and Yıldırım et al. [15] showed that these effects are more important for straight beams. Abramovich [13] studied these effects for the axial and out-of-plane bending oscillations of the simply supported straight beams. Khdeir and Reddy [14] considered the fundamental frequencies for axial and out-of-plane bending vibrations. Yıldırım et al. [15] presented a detailed analysis for the in-plane free vibration behaviour of straight beams.

The main objective of the present study is to present the rotary inertia, axial and shear-deformation effects on the in-plane natural frequencies of curved beams. In this study, the transfer matrix method is preferred as a numerical solution technique for the free vibration analysis of the continuous arch system. The transfer matrix method is used for the solution of one-dimensional problems. However, the method has not been applied widely to the composite analysis of beams. It is well known that the transfer matrix method gives exact results when the exact overall dynamic transfer matrix can be obtained. The main problem with this method is the determination of the exact overall transfer matrix considering rotary inertia, axial and shear deformation effects. In this study, the exact overall dynamic transfer matrix of the arch is obtained using Yıldırım's numerical algorithm, which was successfully used for both isotropic [16-20] and anisotropic [12,15] materials. The rotary inertia, axial and shear deformation effects have been studied considering R / h (the radius of the arch/thickness) ratios, the boundary conditions, the opening angles, α, and the ratio of extensional modulus to the transverse modulus $\left(E_{1} / E_{2}\right)$ for the first six free vibration frequencies. The numerical results are given in graphical and tabular forms.

2. FORMULATION OF THE PROBLEM

Yıldırım [21] presented the free and forced vibration equations of initially twisted laminated composite space rods. Referring to this study, the following equations are obtained for the in-plane free vibration of symmetric cross-ply
laminated circular beams:

$$
\begin{align*}
\frac{\mathrm{d} U_{t}}{\mathrm{~d} s} & =(1 / R) U_{n}+A_{11}^{\prime} T_{t}=(1 / R) U_{n}+A D E \\
\frac{\mathrm{~d} U_{n}}{\mathrm{~d} s} & =-(1 / R) U_{t}+\Omega_{b}+k^{\prime} A_{22}^{\prime} T_{n}=-(1 / R) U_{t}+\Omega_{b}+S D E \\
\frac{\mathrm{~d} \Omega_{b}}{\mathrm{~d} s} & =D_{33}^{\prime} M_{b} \\
\frac{\mathrm{~d} T_{t}}{\mathrm{~d} s} & =(1 / R) T_{n}-\bar{A} \omega^{2} U_{t} \\
\frac{\mathrm{~d} T_{n}}{\mathrm{~d} s} & =-(1 / R) T_{t}-\bar{A} \omega^{2} U_{n} \\
\frac{\mathrm{~d} M_{b}}{\mathrm{~d} s} & =-T_{n}-\bar{I}_{3} \omega^{2} \Omega_{b}=-T_{n}+R I E . \tag{1}
\end{align*}
$$

The following assumptions are used in the derivation of equations (1): the relationship between the forces and deformations are small and linear. The bar is made of an elastic, homogeneous and orthotropic material. Cross-sectional area is uniform. Warping and pre-twisting are neglected. The normal, \mathbf{n}, and binormal, \mathbf{b}, axes are the principal axes of the beam (Figure 1).

In equations (1), T_{t} and T_{n} are the axial and shear forces, M_{b} is the bending moment, respectively. U_{t} and U_{n} are the displacements in the \mathbf{t} (tangential unit vector) and \mathbf{n} directions, respectively. Ω_{b} is the rotation about \mathbf{b} axis, k^{\prime} is the shear coefficient factor, $\omega(\mathrm{rad} / \mathrm{s})$ is the circular frequency and $\mathrm{d} s(=R \mathrm{~d} \theta)$ is the infinitesimal length of the beam. ADE, SDE and RIE represent the effects of the axial and shear deformations and the rotary inertia, respectively. Other terms in equations (1) are as follows for laminated beams:

$$
\begin{equation*}
\bar{A}=\sum_{k=1}^{N} \rho^{(k)} A^{(k)}, \quad \bar{I}_{3}=\sum_{k=1}^{N} \rho^{(k)} I_{b}^{(k)}, \tag{2}
\end{equation*}
$$

where N represents the total number of plies, and ρ denotes the density of the material. I_{b} is the moment of inertia about \mathbf{b} axis and A is the undeformed cross-sectional area. The cross-sectional rigidities in equations (1) are achieved as in the following:

$$
\begin{equation*}
A_{11}^{\prime}=1 / \sum_{k=1}^{N} \bar{Q}_{11}^{(k)} A^{(k)}, \quad A_{22}^{\prime}=1 / \sum_{k=1}^{N} \bar{Q}_{22}^{(k)} A^{(k)}, \quad D_{33}^{\prime}=1 / \sum_{k=1}^{N}\left(\bar{Q}_{11}^{(k)} I_{b}^{(k)}\right), \tag{3}
\end{equation*}
$$

Fig. 1. A laminated composite circular beam and Frenet co-ordinates ($\mathbf{t}, \mathbf{n}, \mathbf{b}$).

In the above equations, the elements of the transformed reduced stiffness matrix $\overline{\mathbf{Q}}$ for a lamina is obtained as follows:

$$
\begin{equation*}
\bar{Q}_{11}=\left(C_{11}^{\prime} S_{11}^{\prime}+C_{12}^{\prime} S_{12}^{\prime}+C_{13}^{\prime} S_{13}^{\prime}\right) / S_{11}^{\prime}, \quad \bar{Q}_{22}=C_{66}^{\prime} \tag{4}
\end{equation*}
$$

where $C_{i j}^{\prime}$ and $S_{i j}^{\prime}$ denote the elements of the transformed stiffness and compliance matrices, respectively. They are given by Yıldırım [21] for transversely isotropic material as

$$
\begin{align*}
& C_{11}^{\prime}=m^{4} C_{11}+2\left(m^{2}-m^{4}\right) C_{12}+C_{22}\left(1-2 m^{2}+m^{4}\right)+4\left(m^{2}-m^{4}\right) C_{66}, \\
& C_{12}^{\prime}=\left(m^{2}-m^{4}\right) C_{11}+\left(m^{2}-m^{4}\right) C_{22}+C_{12}\left(1-2 m^{2}+2 m^{4}\right)-4\left(m^{2}-m^{4}\right) C_{66}, \\
& C_{13}^{\prime}=m^{2} C_{12}+\left(1-m^{2}\right) C_{23} \\
& C_{66}^{\prime}=\left(m^{2}-m^{4}\right) C_{11}-2\left(m^{2}-m^{4}\right) C_{12}+\left(m^{2}-m^{4}\right) C_{22}+\left(1-4 m^{2}+4 m^{4}\right) C_{66}, \\
& S_{11}^{\prime}=m^{4} S_{11}+2\left(m^{2}-m^{4}\right) S_{12}+S_{22}\left(1-2 m^{2}+m^{4}\right)+\left(m^{2}-m^{4}\right) S_{66}, \\
& S_{12}^{\prime}=\left(m^{2}-m^{4}\right) S_{11}+\left(m^{2}-m^{4}\right) S_{22}+S_{12}\left(1-2 m^{2}+2 m^{4}\right)+\left(m^{4}-m^{2}\right) S_{66}, \\
& S_{13}^{\prime}=m^{2} S_{12}+\left(1-m^{2}\right) S_{23}, \tag{5}
\end{align*}
$$

where

$$
\begin{equation*}
m=\cos \beta \tag{6}
\end{equation*}
$$

and β is the angle between the beam axis and the material symmetry axis (Figure 2). In reference [21], three-dimensional generalized Hooke's law is used based on the classical beam theory to obtain the resultant constitutive equations of the beam.

Fig. 2. Positive rotation of principal material axes $\left(1^{\prime}, 2^{\prime}, 3^{\prime}\right)$ from the beam $(1,2,3)$ axes.

This formulation, which comprises the Poisson effect, coincides with the elasticity and compliance matrices in the off-axis co-ordinate system given by Graff and Springer [22].

The matrix form of equations (1) is as follows:

$$
\begin{equation*}
\mathrm{d} \mathbf{Z} / \mathrm{d} s=\mathbf{D}^{*} \mathbf{Z} \tag{7}
\end{equation*}
$$

where \mathbf{D}^{*} is the dynamic differential matrix and \mathbf{Z} is the state vector. In the transfer matrix method, which provides an exact solution to the problem, the solution of equation (7) is given by Pestel and Leckie [23] as

$$
\begin{equation*}
\mathbf{Z}(s)=\mathbf{F}(s, \omega) \mathbf{Z}(0) \tag{8}
\end{equation*}
$$

where \mathbf{F} is the overall dynamic transfer matrix. The standard expression of \mathbf{F} for constant sections is in the following form [23]:

$$
\begin{equation*}
\mathbf{F}(s, \omega)=\mathrm{e}^{\mathbf{D}^{* s}}=\mathbf{I}+s \mathbf{D}^{*}+s^{2} \mathbf{D}^{* 2} / 2!+s^{3} \mathbf{D}^{* 3} / 3!+\cdots \tag{9}
\end{equation*}
$$

where I is the unit matrix. In this study, equation (10), which is the other expression of equation (9) based on the Cayley-Hamilton theorem, is used to calculate the transfer matrix by the effective numerical algorithm available in literature [16-20]:

$$
\begin{equation*}
\mathbf{F}(s, \omega)=\sum_{k=0}^{5} \Phi_{k}(s, \omega) \mathbf{D}^{* k} \tag{10}
\end{equation*}
$$

where $\Phi_{k}(s, \omega)$ are functions of scalar infinite series in s and ω. It is necessary to take a number of terms in the infinite series Φ into consideration to obtain accurate results. The present numerical algorithm [16-20] offers an effective procedure to employ many terms in the calculation of the overall transfer matrix without encountering any ill situations. In this study, 600 terms were taken into account in each Φ series of equation (10). Six hundred terms in equation (10) correspond to 3600 terms in equation (9). After computation of the overall dynamic transfer
matrix, the eigenvalue equation can be obtained considering the boundary conditions given at both ends ($s=0$ and $s=R \alpha$) using equation (8). The boundary conditions are expressed as follows: Clamped end: $U_{t}=U_{n}=\Omega_{b}=0$; Hinged end: $U_{t}=U_{n}=M_{b}=0$; and Free end: $T_{t}=T_{n}=M_{b}=0$. The natural frequency, is, then, computed by setting the determinant of the coefficient matrix in the frequency equation equal to zero. In this study, all numerical computations were performed using double-precision arithmetic. The natural frequencies were obtained by the method of searching the determinant of the coefficient matrix.

3. NUMERICAL EXAMPLES AND DISCUSSION

The material properties of transversely isotropic materials used in this study are given in Table 1. In Table 1, $E_{i} G_{i j}, v_{i j}$ represent the Young's moduli, shear moduli, and the Poisson ratio for an orthotropic lamina, respectively. The shear correction factor is taken to be $k^{\prime}=6 / 5$. In order to examine the accuracy of the present theory with the reported values, miscellaneous problems were solved for different boundary conditions and material types.

As a test example, the axial and out-of-plane free vibration problem of a graphite-epoxy ${ }^{1}$ beam is handled. The reported results presented in Table 2 are for Graphite-epoxy ${ }^{1}$ material. Table 3 shows the present results of the same example for different material types. A good agreement is observed on comparing Tables 2 and 3.

The first eight purely in-plane (axial + in-plane bending) free vibration frequencies of the test example are presented in Table 4 for different boundary conditions, h / b ratios and material types. As can be seen from Table 4, non-dimensional natural frequencies increase with decreasing h / b ratios.

A number of examples are solved to investigate the effects of the rotary inertia, axial and shear deformations on the natural frequencies of $\left(0^{\circ} / 90^{\circ} / 0^{\circ}\right)$ laminated beams. All layers are assumed to have the same thickness and the beam is assumed to have orthotropic material properties $\left(E_{1} / E_{2}=40, G_{12}=0 \cdot 6 E_{2}, G_{23}=0 \cdot 5 E_{2}\right.$, $v_{12}=0 \cdot 25[14]$) in the material principal axes. The shape of the cross-section is assumed to be a square $(h / b=1)$. The following is used for the determination of

TABLE 1
Mechanical properties of transversely isotropic materials

Material types	E_{1} (GPa)	E_{2} (GPa)	$G_{12}=G_{13}$ (GPa)	G_{23} (GPa)	ρ $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	v_{12}
Graphite-epoxy (AS4/3501-6)	$144 \cdot 8$	$9 \cdot 65$	$4 \cdot 14$	$3 \cdot 45$	$1389 \cdot 23$	$0 \cdot 3$
Graphite-epoxy						
(T300/N5208) Kevlar 49-epoxy	$181 \cdot 0$	$10 \cdot 3$	$7 \cdot 17$	$3 \cdot 433$	$1600 \cdot 0$	$0 \cdot 28$
$76 \cdot 0$	$5 \cdot 56$	$2 \cdot 30$	$1 \cdot 618$	$1460 \cdot 0$	$0 \cdot 34$	

Table 2
Non-dimensional axial and out-of-plane bending natural frequencies $\left[=\omega L^{2}\left(\rho / E_{1} h^{2}\right)^{1 / 2}\right]$ of symmetric $\left[0^{\circ} / 90^{\circ} / 90^{\circ} / 0^{\circ}\right]$ graphite-epoxy ${ }^{1}$ beams ($L / h=10$ and $h / b=1$) in the literature

Mode numbers	Simple-simple		Fixed-free		Fixedsimple [24]	Fixed-fixed	
	[24]	[25]	[24]	[25]		[24]	[25]
1	$2 \cdot 3189$	$2 \cdot 3194$	$0 \cdot 8891$	$0 \cdot 8819$	3.0447	3.7751	3.7576
2	7.0171	7.0029	$4 \cdot 1792$	$4 \cdot 0259$	7.5593	8.0440	$7 \cdot 8718$
3	$12 \cdot 132$	12.037	$9 \cdot 1916$	$9 \cdot 1085$	12.565	$12 \cdot 998$	12.573
4	$17 \cdot 301$	17.015	-(*)	$12 \cdot 193$	17.732	$18 \cdot 165$	17.373
5	22.533	21.907	$14 \cdot 384$	14.080	23.011	$23 \cdot 502$	22.200
6	- (*)	23.337	$19 \cdot 175$	$19 \cdot 066$	28.430	- (*)	23.337
7	$27 \cdot 881$	$26 \cdot 736$	25.093	23.938	34.027	28.991	$27 \cdot 254$
8	33.396	-	$30 \cdot 620$	-	$39 \cdot 838$	$34 \cdot 675$	-

*Longitudinal modes stated by reference [25].
non-dimensional frequencies:

$$
\begin{equation*}
\omega=\sqrt{\frac{\rho}{E_{2} h^{2}}} \omega R^{2} . \tag{11}
\end{equation*}
$$

The relative error between Timoshenko's and Bernoulli's frequencies is determined as ($\sigma^{T}=$ Timoshenko's frequency, $\varpi^{B}=$ Bernoulli's frequency):

$$
\begin{equation*}
\text { Relative error }=100\left(\sigma^{T}-\varpi^{B}\right) / \sigma^{T} . \tag{12}
\end{equation*}
$$

Variation of the first six in-plane non-dimensional natural frequencies are presented in Figures 3-5 with varying R / h ratios, boundary conditions, and opening angles. The Timoshenko and Bernoulli solutions, and relative error for Bernoulli theory are shown in Figures 3-5. It is observed from the figures that relative errors increase with decreasing R / h ratios, increasing the number of modes, decreasing opening angles and increasing the number of constraints for boundary conditions. For the fundamental frequencies, while the absolute relative error is 0.8% for the fixed-free beam with $R / h=25$ and $\alpha=90^{\circ}$, this value reaches 16% for the fixed-fixed beam with $R / h=25$ and $\alpha=90^{\circ}$. For the sixth natural frequency of the fixed-fixed beam with $R / h=5$ and $\alpha=10^{\circ}$, the absolute relative error rises by $6,950 \%$. The absolute relative error for the fundamental frequency is equal to 830% for fixed-fixed ends with $R / h=25$ and $\alpha=10^{\circ}$. Figures 3-5 display the application limits of the Bernoulli theory for $L / h \leqslant 25$ for $\alpha=10^{\circ}$ and $\alpha=90^{\circ}$. The relative errors from the inner opening angles, $10^{\circ}<\alpha<90^{\circ}$, can be estimated approximately depending on the errors for 10° and 90°. It is clearly understood from these figures that the free and forced vibration of laminated composite curved beams must be studied with the shear deformation theories.
Table 3
Non-dimensional axial and out-of-plane bending natural frequencies $\left[=\omega L^{2}\left(\rho / E_{1} h^{2}\right)^{1 / 2}\right]$ of symmetric $\left[0^{\circ} / 90^{\circ} / 90^{\circ} / 0^{\circ}\right]$ beams $(L / h=10$ and $h / b=1)$ for different material types obtained in the present study. $(S S=$ simple-simple, $C C=$ clamped-clamped, $C F=$ clamped - free,$C S=$ clamped-simple)

	Graphite-epoxy ${ }^{1}$				Graphite-epoxy ${ }^{2}$				Kevlar-epoxy			
Modes	SS	CF	CS	CC	SS	CF	CS	CC	SS	CF	CS	CC
1	2.31426	0.88516	3.01055	3.69637	2.34371	$0 \cdot 89105$	3.08802	3.82440	$2 \cdot 31016$	$0 \cdot 88443$	2.99913	3.67744
2	6.99485	$4 \cdot 11318$	7.40702	7.75292	7-20974	$4 \cdot 22560$	7.68303	8.08266	6.96305	4.09664	$7 \cdot 36633$	$7 \cdot 70440$
3	12.0310	8.97506	12.2248	12.4153	12.5279	$9 \cdot 30243$	12.7602	12.9858	11.9576	8.92686	$12 \cdot 1460$	12.3316
4	17.0109	11.4714	$17 \cdot 1062$	$17 \cdot 1959$	17.8101	11.4189	17.9269	18.0372	16.8933	11.5021	16.9857	17.0725
5	21.9063	13.9443	21.9572	22.0094	$22 \cdot 8378$	$14 \cdot 5493$	$22 \cdot 8378$	$22 \cdot 8378$	$21 \cdot 7451$	$13 \cdot 8553$	21.7943	21.8449
6	22.9427	18.9405	22.9427	22.9427	23.0059	19.8394	23.0688	$23 \cdot 1329$	23.0042	18.8085	23.0042	23.0042
7	26.7379	23.8304	26.7669	26.7945	$28 \cdot 1317$	25.0269	$28 \cdot 1679$	28.2026	26.5338	23.6551	26.5619	26.5885
8	31.5247	28.6788	31.5420	31.5604	33-2074	30.1665	$33 \cdot 2291$	$33 \cdot 2517$	31.2787	28.4611	31-2954	31.3132

Table 4
The first eight non-dimensional in-plane natural frequencies obtained in the present study $\left[=\omega L^{2}\left(\rho / E_{1} h^{2}\right)^{1 / 2}\right]$ of symmetric $\left[0^{\circ} / 90^{\circ} / 90^{\circ} / 0^{\circ}\right]$ beams $(L / h=10)$ for different material types and h / b ratios $(C C=$ clamped-clamped, $C F=$ clamped-free, $C S=$ clamped - simple $)$

Modes	Graphite-epoxy ${ }^{1}$			Graphite-epoxy ${ }^{2}$			Kevlar-epoxy		
	CF	CS	CC	CF	CS	CC	CF	CS	CC
$h / b=2$									
1	$0 \cdot 36653$	1.52926	2.12319	$0 \cdot 36602$	1.54728	2.17239	$0 \cdot 36770$	1.53782	2.13898
2	$2 \cdot 15825$	$4 \cdot 55124$	5.27546	2.18958	4.69840	$5 \cdot 52258$	$2 \cdot 17117$	4.59182	$5 \cdot 33496$
3	$5 \cdot 55123$	$8 \cdot 58203$	$9 \cdot 28724$	$5 \cdot 74145$	9.04211	9.91200	$5 \cdot 60255$	8.68751	9.42044
4	9•82708	$13 \cdot 1993$	13.7974	10.3673	$14 \cdot 1581$	14.9582	9.94965	13.3991	14.0288
5	11.4715	$18 \cdot 1355$	18.6090	11.4189	19.7448	$20 \cdot 4267$	11.5022	18.4521	18.9565
6	14.6215	$22 \cdot 9428$	$22 \cdot 9428$	15.6937	22.8378	$22 \cdot 8378$	14.8441	23.0043	23.0043
7	19.6852	$23 \cdot 2325$	23.5943	21.4361	25.6054	$26 \cdot 1610$	20.0293	23.6816	24.0710
8	24.8755	28.3992	28.6720	27.4135	$31 \cdot 6156$	32.0573	$25 \cdot 3558$	28.9914	29.2872
$h / b=1$									
1	0.70980	$2 \cdot 63779$	$3 \cdot 38738$	$0 \cdot 71474$	2.76135	$3 \cdot 63052$	$0 \cdot 71323$	$2 \cdot 66748$	3.43841
2	$3 \cdot 63691$	6.89872	7.43496	$3 \cdot 82779$	7.47908	$8 \cdot 21125$	3.68102	7.01440	$7 \cdot 58090$
3	8.33536	11.7972	$12 \cdot 1429$	$9 \cdot 03423$	13.0805	$13 \cdot 6055$	8.47446	12.0355	$12 \cdot 4065$
4	11.4715	16.8954	$17 \cdot 0922$	11.4189	19.0230	$19 \cdot 3546$	11.5022	17.2756	17.4903
5	13.4299	22.0217	22.1391	14.8775	$22 \cdot 8378$	22.8378	13.6991	22.5527	22.6818
6	18.6600	$22 \cdot 9428$	22.9428	20.9817	25.0656	25.2741	19.0761	23.0043	23.0043
7	23.8492	$27 \cdot 1213$	$27 \cdot 1906$	$27 \cdot 1115$	31.1096	31.2392	24.4197	$27 \cdot 8058$	$27 \cdot 8825$
8	28.9894	32.1834	32.2274	$33 \cdot 2062$	$37 \cdot 1210$	$37 \cdot 2041$	29.7147	33.0212	33.0697

TABLE 4 (continued)

Modes	Graphite-epoxy ${ }^{1}$			Graphite-epoxy ${ }^{2}$			Kevlar-epoxy		
	CF	CS	CC	CF	CS	CC	CF	CS	CC
$h / b=0 \cdot 5$									
1	1-26904	3.71748	$4 \cdot 31837$	$1 \cdot 31265$	4-10562	$4 \cdot 88290$	$1 \cdot 28096$	$3 \cdot 79045$	$4 \cdot 41853$
2	5.00902	8.54610	$8 \cdot 70002$	$5 \cdot 52592$	9.67737	9.94947	5.10554	$8 \cdot 74522$	8.91446
3	$10 \cdot 3700$	13.5953	13.6797	11.4189	$15 \cdot 6197$	15.7635	10.6038	13.9414	14.0332
4	$11 \cdot 4715$	18.6185	18.6378	11.6852	$21 \cdot 5725$	$21 \cdot 6146$	11.5022	$19 \cdot 1148$	$19 \cdot 1366$
5	15.4237	$22 \cdot 9428$	22.9428	17.6707	22.8378	$22 \cdot 8378$	$15 \cdot 8094$	23.0043	23.0043
6	20.5166	23.5956	23.6142	23.6914	$27 \cdot 4731$	$27 \cdot 5044$	21.0529	$24 \cdot 2408$	24.2610
7	$25 \cdot 1711$	28.5203	28.5316	$29 \cdot 1859$	$33 \cdot 2638$	$33 \cdot 3117$	$25 \cdot 8412$	29.3085	29.3227
8	28.9895	29.1985	33.4660	33.6091	33.6532	44.9892	29.7513	29.9279	$34 \cdot 4036$

Fig. 3. The first six natural frequencies of the fixed-free circular beam.

The effects of the extensional modulus to the transverse modulus, E_{1} / E_{2}, on the fundamental natural frequencies are examined and the results are presented in Table 5 . As can be expected, when E_{1} / E_{2} increases, the effects of the rotary inertia, axial and shear deformation effects increase considerably.

Finally, the purely in-plane Timoshenko's and Bernoulli's frequencies of a $\left[0^{\circ} / 90^{\circ} / 90^{\circ} / 0^{\circ}\right]$ Graphite-epoxy straight beam with fixed-free and fixed-simple

Fig. 4. The first six natural frequencies of the fixed-simple circular beam.
ends $(L / h=10, h / b=1)$ are given in Table 6 in a comparative manner. The rotary inertia, the shear and extensional deformation effects are considerably more important for straight beams than curved beams.

4. CONCLUSIONS

The in-plane free vibration analysis of symmetric cross-ply laminated circular arcs was studied to investigate the axial and shear deformations, and the rotary

Fig. 5. The first six natural frequencies of the fixed-fixed circular beam.
inertia effects on the first six natural frequencies. The accuracy of the formulation was verified by solving miscellaneous numerical examples. It was observed from the comparisons that this formulation offers reasonable results for the natural frequencies associated with the first and the higher modes. A non-dimensional parametric study was performed based on the Timoshenko and Bernoulli-Euler beam theories for different boundary conditions, slenderness ratios, the ratio of the extensional modulus to the transverse shear modulus, and opening angles. It was

Table 5
Variation of the purely fundamental in-plane Timoshenko's natural frequencies $\left[=\omega L^{2}\left(\rho / E_{2} h^{2}\right)^{1 / 2}\right]$ of $\left[0^{\circ} / 90^{\circ} / 0^{\circ}\right]$ circular beam with the ratio of E_{1} / E_{2} for fixed-fixed ends $(L / h=10, h / b=1)$

$\alpha\left({ }^{\circ}\right)$	E_{1} / E_{2}	Timoshenko	Relative error for Bernoulli $(-\%)$
10	1	$108 \cdot 31$	440
	20	$129 \cdot 89$	1561
	40	$134 \cdot 72$	2151
90	1	$6 \cdot 217$	31
	20	$16 \cdot 759$	44
	40	$19 \cdot 273$	76

Table 6
The purely in-plane frequencies $\left[=\omega L^{2}\left(\rho / E_{1} h^{2}\right)^{1 / 2}\right]$ of $\left[0^{\circ} / 90^{\circ} / 90^{\circ} / 0^{\circ}\right]$ Graphite-epoxy ${ }^{1}$ straight beam $(L / h=10, h / b=1)$

Modes	Fixed-free		Fixed-simple	
	Timoshenko	Bernoulli	Timoshenko	Bernoulli
1	0.710	$0.742(-4.5 \%)^{*}$	$2 \cdot 638$	$3 \cdot 251$ (-23\%)*
2	3.637	4.646 (-28\%)*	6.899	10.53 (-53\%)*
3	8.335	13.01 (-56\%)*	$11 \cdot 80$	21.98 (-86\%)*
4	$11 \cdot 47$	25.49 (-122\%)*	16.90	37.58 (-122\%)*
5	13.43	$42 \cdot 13$ (-214\%)*	22.02	57.35 (-160\%)*
6	18.66	$62 \cdot 94$ (-237\%)*	22.94	$81 \cdot 28$ (-254\%)*

*The relative errors for Bernoulli's results [equation (12)].
concluded that dynamical problems of laminated composite circular arches must be solved considering the rotary inertia, axial and transverse shear deformation effects in the mathematical formulation.

ACKNOWLEDGMENT

This study was sponsored by the Scientific and Technical Research Council of Turkey (TUBITAK). The author gratefully acknowledges the TUBITAK.

REFERENCES

1. P. Chidamparam and A. W. Leissa 1993 Applied Mechanics Reviews 46, 467-483. Vibrations of planar curved beams, rings, and arches.
2. K. M. Ahmed 1971 Journal of Sound and Vibration 18, 61-74. Free vibrations of curved sandwich beams by the method of finite elements.
3. K. M. Ahmed 1972 Journal of Sound and Vibration 21, 263-276. Dynamic analysis of sandwich beams.
4. R. A. Ditaranto 1973 Journal of the Acoustical Society of America 53, 748-757. Free and forced response of a laminated ring.
5. M. J. Sagartz 1997 Journal of Applied Mechanics, 44, 299-304. Transient response of three-layered rings.
6. A. Bhimaraddi 1988 International Journal of Solids and Structures 24, 363-373. Generalized analysis of shear deformable rings and curved beams.
7. A. Bhimaraddi, A. J. Carr and P. J. Moss 1989 Computers and Structures 31, 309-317. Generalized finite element analysis of laminated curved beams with constant curvature.
8. C. Liao and J. N. Reddy 1990 Computers and Structures 34, 805-815. Analysis of anisotropic, stiffened composite laminates using a continuum-based shell element.
9. M. S. Qatu 1992 Journal of Sound and Vibration 159, 327-338. In-plane vibration of slightly curved laminated composite beams.
10. M. S. Qatu and A. A. Elsharkawy 1993 Computers and Structures 47, 305-311. Vibration of laminated composite arches with deep curvature and arbitrary boundaries.
11. M. S. Qatu 1993 International Journal of Solids and Structures 30, 2743-2756. Theories and analyses of thin and moderately thick laminated composite beams.
12. V. Yildirim 1999 Journal of Engineering Mechanics, ASCE. In-plane free vibration of symmetric cross-ply laminated circular bars [to be published].
13. H. Abramovich 1992 Composites Structures 20, 165-173. Shear deformation and rotary inertia effects of vibrating composite beams.
14. A. A. Khdeir and J. N. Reddy 1994 International Journal of Engineering Science 32, 1971-1980. Free vibration of cross-ply laminated beams with arbitrary boundary conditions.
15. V. Yildirim, E. Sancaktar and E. Kiral 1999, Journal of Applied Mechanics, ASME. Comparison of the in-plane natural frequencies of symmetric cross-ply laminated beams based on the Bernoulli-Euler and Timoshenko beam theories [to be published].
16. V. Yildirim 1996 International Journal for Numerical Methods in Engineering 39, 99-114. Investigation of parameters affecting free vibration frequency of helical springs.
17. V. Yildirim 1997 Computers and Structures 62, 475-485. A computer program for the free vibration analysis of elastic arcs.
18. V. Yildirim 1998 Journal of Applied Mechanics ASME 65, 157-163. A parametric study on the free vibration of non-cylindrical helical springs.
19. V. Yildirim and N. Ince 1998 Journal of Sound and Vibration 204, 311-329. Natural frequencies of helical springs of arbitrary shape.
20. V. Yildirim 1999 International Journal of Mechanical Sciences 41, 919-939. An efficient numerical method for predicting the natural frequencies of cylindrical helical springs.
21. V. Yildirim 1999 International Journal of Engineering Science. Governing equations of initially twisted elastic space rods made of laminated composite materials [to be published].
22. E. Graff and G. S. Springer 1991 Computers and Structures 38, 41-55. Stress analysis of thick, curved composite laminates.
23. E. C. Pestel and F. A. Leckie, 1963 Matrix Methods in Elastomechanics. New York: McGraw-Hill.
24. M. P. Singh and A. S. Abdelnassar 1992 American Institute of Aeronautics and Astronautics Journal 30, 1081-1088. Random response of symmetric cross-ply composite beams with arbitrary boundary conditions.
25. H. Abramovich and A. Livshits 1994 Journal of Sound and Vibration 176, 597-612. Free vibrations of non-symmetric cross-ply laminated composite beams.
